2,330 research outputs found

    Chemical aging of m-xylene secondary organic aerosol: laboratory chamber study

    Get PDF
    Secondary organic aerosol (SOA) can reside in the atmosphere for a week or more. While its initial formation from the gas-phase oxidation of volatile organic compounds tends to take place in the first few hours after emission, SOA can continue to evolve chemically over its atmospheric lifetime. Simulating this chemical aging over an extended time in the laboratory has proven to be challenging. We present here a procedure for studying SOA aging in laboratory chambers that is applied to achieve 36 h of oxidation. The formation and evolution of SOA from the photooxidation of m-xylene under low-NO_x conditions and in the presence of either neutral or acidic seed particles is studied. In SOA aging, increasing molecular functionalization leads to less volatile products and an increase in SOA mass, whereas gas- or particle-phase fragmentation chemistry results in more volatile products and a loss of SOA. The challenge is to discern from measured chamber variables the extent to which these processes are important for a given SOA system. In the experiments conducted, m-xylene SOA mass, calculated under the assumption of size-invariant particle composition, increased over the initial 12–13 h of photooxidation and decreased beyond that time, suggesting the existence of fragmentation chemistry. The oxidation of the SOA, as manifested in the O:C elemental ratio and fraction of organic ion detected at m/z 44 measured by the Aerodyne aerosol mass spectrometer, increased continuously starting after 5 h of irradiation until the 36 h termination. This behavior is consistent with an initial period in which, as the mass of SOA increases, products of higher volatility partition to the aerosol phase, followed by an aging period in which gas- and particle-phase reaction products become increasingly more oxidized. When irradiation is stopped 12.4 h into one experiment, and OH generation ceases, minimal loss of SOA is observed, indicating that the loss of SOA is either light- or OH-induced. Chemical ionization mass spectrometry measurements of low-volatility m-xylene oxidation products exhibit behavior indicative of continuous photooxidation chemistry. A condensed chemical mechanism of m-xylene oxidation under low-NO_x conditions is capable of reproducing the general behavior of gas-phase evolution observed here. Moreover, order of magnitude analysis of the mechanism suggests that gas-phase OH reaction of low volatility SOA precursors is the dominant pathway of aging in the m-xylene system although OH reaction with particle surfaces cannot be ruled out. Finally, the effect of size-dependent particle composition and size-dependent particle wall loss rates on different particle wall loss correction methods is discussed

    A New Class of Non-Linear Stability Preserving Operators

    Full text link
    We extend Br\"and\'en's recent proof of a conjecture of Stanley and describe a new class of non-linear operators that preserve weak Hurwitz stability and the Laguerre-P\'olya class.Comment: Fixed typos, spelling, and updated links in reference

    Global auroral responses to magnetospheric compressions by shocks in the solar wind: Two case studies

    Get PDF
    The global auroral responses to shocks in the solar wind at Earth were studied. The z-component of the interplanetary magnetic field, Bz, is negative ahead and behind the first shock and positive for the second case. A sudden-commencement geomagnetic storm develops in each case, with maximum D sub st 190 nT. An immediate auroral response is detected at all longitudes around the auroral oval, in which auroral luminosities increase by a factor of 2 to 3 with the first samples after each sudden commencement. The time delay in obtaining the first sample varies with local time from approx. 1 to 18 mins. No other significant variations in the aurora are associated with the immediate response. Beginning approx. 30 mins after each sudden commencement, the aurora becomes active and displays significant variations in its luminosity and spatial distribution. For Bz 0 an intense substorm develops. A sun-aligned transpolar arc forms when Bz 0, appearing first at local midnight as a polar arc and then lengthening sunward from the auroral oval across the polar cap to noon at an average speed of approx. 1 km/sec

    Integrated stress response is critical for gemcitabine resistance in pancreatic ductal adenocarcinoma

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with marked chemoresistance and a 5-year survival rate of 7%. The integrated stress response (ISR) is a cytoprotective pathway initiated in response to exposure to various environmental stimuli. We used pancreatic cancer cells (PCCs) that are highly resistant to gemcitabine (Gem) and an orthotopic mouse model to investigate the role of the ISR in Gem chemoresistance. Gem induced eIF2 phosphorylation and downstream transcription factors ATF4 and CHOP in PCCs, and these effects occurred in an eIF2α-S51 phosphorylation-dependent manner as determined using PANC-1 cells, and wild type and S51 mutant mouse embryo fibroblasts. Blocking the ISR pathway in PCCs with the ISR inhibitor ISRIB or siRNA-mediated depletion of ATF4 resulted in enhanced Gem-mediated apoptosis. Polyribosomal profiling revealed that Gem caused repression of global translation and this effect was reversed by ISRIB or by expressing GADD34 to facilitate eIF2 dephosphorylation. Moreover, Gem promoted preferential mRNA translation as determined in a TK-ATF4 5'UTR-Luciferase reporter assay, and this effect was also reversed by ISRIB. RNA-seq analysis revealed that Gem upregulated eIF2 and Nrf2 pathways, and that ISRIB significantly inhibited these pathways. Gem also induced the expression of the antiapoptotic factors Nupr1, BEX2, and Bcl2a1, whereas ISRIB reduced their expression. In an orthotopic tumor model using PANC-1 cells, ISRIB facilitated Gem-mediated increases in PARP cleavage, which occurred in conjunction with decreased tumor size. These findings indicate that Gem chemoresistance is enhanced by activating multiple ISR-dependent pathways, including eIF2, Nrf2, Nupr1, BEX2, and Bcl2A1. It is suggested that targeting the ISR pathway may be an efficient mechanism for enhancing therapeutic responsiveness to Gem in PDAC

    The hydrogen coma of Comet Halley before perihelion: Preliminary observations with dynamics Explorer 1

    Get PDF
    The hydrogen coma of Comet Halley has been observed in resonantly scattered solar Lyman-alpha radiation during the period 1-29 January 1986 as the comet approached perihelion. These observations were obtained with the imaging photometer for vacuum-ultraviolet wavelengths on the spacecraft Dynamics Explorer 1. For the initial analysis of observations available in 17 orbits distributed throughout the period, least-squares fits are computed for the observed exponential decrease in brightness with radial distance from the nucleus. Brightness at the nucleus increased from approx. 3 to 17 kR during the observing period. Preliminary analysis yields water production rates of approx. 3.6 x 10 to the 29th power and 1.9 x 10 to the 30th power molecules/sec on 1 and 29 January, respectively

    Remote measurement utilizing NASA's scanning laser Doppler systems. Volume 1. Laser Doppler wake vortex tracking at Kennedy Airport

    Get PDF
    Test operations of the Scanning Laser Doppler System (SLDS) at Kennedy International Airport (KIA) during August 1974 through June 1975 are reported. A total of 1,619 data runs was recorded with a totally operational system during normal landing operations at KIA. In addition, 53 data runs were made during cooperative flybys with the C880 for a grand total of 1672 recorded vortex tracks. Test crews were in attendance at KIA for 31 weeks, of which 25 weeks were considered operational and the other six were packing, unpacking, setup and check out. Although average activity equates to 67 recorded landing operations per week, two periods of complete runway inactivity spanned 20 days and 13 days, respectively. The operation frequency therefore averaged about 88 operations per week

    Plasmaspheric H+, He+, He++, O+, and O++ Densities and Temperatures

    Get PDF
    Thermal plasmaspheric densities and temperatures for five ion species have recently become available, even though these quantities were derived some time ago from the Retarding Ion Mass Spectrometer onboard the Dynamics Explorer 1 satellite over the years 1981-1984. The quantitative properties will be presented. Densities are found to have one behavior with lessor statistical variation below about L=2 and another with much greater variability above that Lshell. Temperatures also have a behavior difference between low and higher L-values. The density ratio He++/H+ is the best behaved with values of about 0.2% that slightly increase with increasing L. Unlike the He+/H+ density ratio that on average decreases with increasing Lvalue, the O+/H+ and O++/H+ density ratios have decreasing values below about L=2 and increasing average ratios at higher L-values. Hydrogen ion temperatures range from about 0.2 eV to several 10s of eV for a few measurements, although the bulk of the observations are of temperatures below 3 eV, again increasing with L-value. The temperature ratios of He+/H+ are tightly ordered around 1.0 except for the middle plasmasphere between L=3.5 and 4.5 where He+ temperatures can be significantly higher. The temperatures of He++, O+, and O++ are consistently higher than H+

    A New Global Core Plasma Model of the Plasmasphere

    Get PDF
    The Global Core Plasma Model (GCPM) is the first empirical model for thermal inner magnetospheric plasma designed to integrate previous models and observations into a continuous in value and gradient representation of typical total densities. New information about the plasmasphere, in particular, make possible significant improvement. The IMAGE Mission Radio Plasma Imager (RPI) has obtained the first observations of total plasma densities along magnetic field lines in the plasmasphere and polar cap. Dynamics Explorer 1 Retarding Ion Mass Spectrometer (RIMS) has provided densities in temperatures in the plasmasphere for 5 ion species. These and other works enable a new more detailed empirical model of thermal in the inner magnetosphere that will be presented. Specifically shown here are the inner-plasmasphere RIMS measurements, radial fits to densities and temperatures for H(+), He(+), He(++), O(+), and O(+) and the error associated with these initial simple fits. Also shown are more subtle dependencies on the f10.7 P-value (see Richards et al. [1994])

    Local stabilisation of polar order at charged antiphase boundaries in antiferroelectric (Bi<sub>0.85</sub>Nd<sub>0.15</sub>)(Ti<sub>0.1</sub>Fe<sub>0.9</sub>)O<sub>3</sub>

    Get PDF
    Observation of an unusual, negatively-charged antiphase boundary in (Bi&lt;sub&gt;0.85&lt;/sub&gt;Nd&lt;sub&gt;0.15&lt;/sub&gt;)(Ti&lt;sub&gt;0.1&lt;/sub&gt;Fe&lt;sub&gt;0.9&lt;/sub&gt;)O&lt;sub&gt;3&lt;/sub&gt; is reported. Aberration corrected scanning transmission electron microscopy is used to establish the full three dimensional structure of this boundary including O-ion positions to ~ ± 10 pm. The charged antiphase boundary stabilises tetragonally distorted regions with a strong polar ordering to either side of the boundary, with a characteristic length scale determined by the excess charge trapped at the boundary. Far away from the boundary the crystal relaxes into the well-known Nd-stabilised antiferroelectric phase

    Relative Concentration of He+ in the Inner Magnetosphere as Observed by the DE 1 Retarding Ion Mass Spectrometer

    Get PDF
    With Observations from the retarding ion mass spectrometer on the Dynamics Explorer I from 1981 through 1984, we examine the He(+) to H(+) density ratios as a function of altitude, latitude, season, local time, geomagnetic and solar activity. We find that the ratios are primarily a function of geocentric distance and the solar EUV input. The ratio of the densities, when plotted as a function of geocentric distance, decrease by an order of magnitude from 1 to 4.5 R(sub E). After the He(+) to H(+) density ratios are adjusted for the dependence on radial distance, they decrease nonlinearly by a factor of 5 as the solar EUV proxy varies from about 250 to about 70. When the mean variations with both these parameters are removed, the ratios appear to have no dependence on geomagnetic activity and weak dependence on local time or season, geomagnetic latitude, and L shell
    corecore